Serveur ArXiv MCP
Accès IA aux articles d'ArXiv

Description

Permet aux assistants IA de rechercher et d'accéder aux articles ArXiv via une interface MCP simple.

Détails

Type

AI Integration

Twitter Follow smithery badge Python Version License: MIT PyPI Downloads PyPI Version

ArXiv MCP Server

🔍 Enable AI assistants to search and access arXiv papers through a simple MCP interface.

The ArXiv MCP Server provides a bridge between AI assistants and arXiv's research repository through the Message Control Protocol (MCP). It allows AI models to search for papers and access their content in a programmatic way.

🤝 Contribute • 📝 Report Bug

✨ Core Features

  • 🔎 Paper Search: Query arXiv papers with filters for date ranges and categories
  • 📄 Paper Access: Download and read paper content
  • 📋 Paper Listing: View all downloaded papers
  • 🗃️ Local Storage: Papers are saved locally for faster access
  • 📝 Prompts: A Set of Research Prompts

🚀 Quick Start

Installing via Smithery

To install ArXiv Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install arxiv-mcp-server --client claude

Installing Manually

Install using uv:

uv tool install arxiv-mcp-server

For development:

# Clone and set up development environment git clone https://github.com/blazickjp/arxiv-mcp-server.git cd arxiv-mcp-server # Create and activate virtual environment uv venv source .venv/bin/activate # Install with test dependencies uv pip install -e ".[test]"

🔌 MCP Integration

Add this configuration to your MCP client config file:

{ "mcpServers": { "arxiv-mcp-server": { "command": "uv", "args": [ "tool", "run", "arxiv-mcp-server", "--storage-path", "/path/to/paper/storage" ] } } }

For Development:

{ "mcpServers": { "arxiv-mcp-server": { "command": "uv", "args": [ "--directory", "path/to/cloned/arxiv-mcp-server", "run", "arxiv-mcp-server", "--storage-path", "/path/to/paper/storage" ] } } }

💡 Available Tools

The server provides four main tools:

1. Paper Search

Search for papers with optional filters:

result = await call_tool("search_papers", { "query": "transformer architecture", "max_results": 10, "date_from": "2023-01-01", "categories": ["cs.AI", "cs.LG"] })

2. Paper Download

Download a paper by its arXiv ID:

result = await call_tool("download_paper", { "paper_id": "2401.12345" })

3. List Papers

View all downloaded papers:

result = await call_tool("list_papers", {})

4. Read Paper

Access the content of a downloaded paper:

result = await call_tool("read_paper", { "paper_id": "2401.12345" })

📝 Research Prompts

The server offers specialized prompts to help analyze academic papers:

Paper Analysis Prompt

A comprehensive workflow for analyzing academic papers that only requires a paper ID:

result = await call_prompt("deep-paper-analysis", { "paper_id": "2401.12345" })

This prompt includes:

  • Detailed instructions for using available tools (list_papers, download_paper, read_paper, search_papers)
  • A systematic workflow for paper analysis
  • Comprehensive analysis structure covering:
    • Executive summary
    • Research context
    • Methodology analysis
    • Results evaluation
    • Practical and theoretical implications
    • Future research directions
    • Broader impacts

⚙️ Configuration

Configure through environment variables:

| Variable | Purpose | Default | |----------|---------|---------| | ARXIV_STORAGE_PATH | Paper storage location | ~/.arxiv-mcp-server/papers |

🧪 Testing

Run the test suite:

python -m pytest

📄 License

Released under the MIT License. See the LICENSE file for details.


Made with ❤️ by the Pearl Labs Team

ArXiv Server MCP server